5 research outputs found

    Mitigations to Reduce the Law of Unintended Consequences for Autonomy and Other Technological Advances

    Get PDF
    The United Nations states that Earths population is expected to reach just under 10 billion people (9.7) by the year 2050. To meet the demands of 10 billion people, governments, multinational corporations and global leaders are relying on autonomy and technological advances to augment and/or accommodate human efforts to meet the required needs of daily living. Genetically modified organisms (GMOs), Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) gene-edited plants and cloning will be utilized to expand human food supply. Biomimetic implants are expected to improve life expectancy with 3D printed body parts. Human functioning will be extended with wearables and cybernetic implants continuing humanitys path toward transhumanism. Families will be strengthened with 3 parent households. Disease will surely be eradicated using the CRISPR-CAS9 genetic engineering revolution to design out undesirable human traits and to design in new capabilities. With autonomous cars, trucks and buses on our roads and on-demand autonomous aircraft delivering pizzas, medical prescriptions and groceries in the air and multi-planet vehicles traversing space, utopia will finally arrive! Or will it? All of these powerful, man-made, technological systems will experience unintended consequences with certainty. Instead of over-reacting with hysteria and fear, we should be seeking answers to the following questions - What skills are required to architect socially-healthy technological systems for 2050? What mindsets should we embody to ameliorate hubris syndrome and to build our future technological systems with deliberation, soberness and social responsibility

    Predicting Operator Execution Times Using CogTool

    Get PDF
    Researchers and developers of NextGen systems can use predictive human performance modeling tools as an initial approach to obtain skilled user performance times analytically, before system testing with users. This paper describes the CogTool models for a two pilot crew executing two different types of a datalink clearance acceptance tasks, and on two different simulation platforms. The CogTool time estimates for accepting and executing Required Time of Arrival and Interval Management clearances were compared to empirical data observed in video tapes and registered in simulation files. Results indicate no statistically significant difference between empirical data and the CogTool predictions. A population comparison test found no significant differences between the CogTool estimates and the empirical execution times for any of the four test conditions. We discuss modeling caveats and considerations for applying CogTool to crew performance modeling in advanced cockpit environments

    Information Management to Mitigate Loss of Control Airline Accidents

    Get PDF
    Loss of control inflight continues to be the leading contributor to airline accidents worldwide and unreliable airspeed has been a contributing factor in many of these accidents. Airlines and the FAA developed training programs for pilot recognition of these airspeed events and many checklists have been designed to help pilots troubleshoot. In addition, new aircraft designs incorporate features to detect and respond in such situations. NASA has been using unreliable airspeed events while conducting research recommended by the Commercial Aviation Safety Team. Even after significant industry focus on unreliable airspeed, research and other evidence shows that highly skilled and trained pilots can still be confused by the condition and there is a lack of understanding of what the associated checklist(s) attempts to uncover. Common mode failures of analog sensors designed for measuring airspeed continue to confound both humans and automation when determining which indicators are correct. This paper describes failures that have occurred in the past and where/how pilots may still struggle in determining reliable airspeed when confronted with conflicting information. Two latest generation aircraft architectures will be discussed and contrasted. This information will be used to describe why more sensors used in classic control theory will not solve the problem. Technology concepts are suggested for utilizing existing synoptic pages and a new synoptic page called System Interactive Synoptic (SIS). SIS details the flow of flight critical data through the avionics system and how it is used by the automation. This new synoptic page as well as existing synoptics can be designed to be used in concert with a simplified electronic checklist (sECL) to significantly reduce the time to configure the flight deck avionics in the event of a system or sensor failure

    Usability Evaluation of Indicators of Energy-Related Problems in Commercial Airline Flight Decks

    Get PDF
    A series of pilot-in-the-loop flight simulation studies were conducted at NASA Langley Research Center to evaluate indicators aimed at supporting the flight crews awareness of problems related to energy states. Indicators were evaluated utilizing state-of-the-art flight deck systems such as on commercial air transport aircraft. This paper presents results for four technologies: (1) conventional primary flight display speed cues, (2) an enhanced airspeed control indicator, (3) a synthetic vision baseline that provides a flight path vector, speed error, and an acceleration cue, and (4) an aural airspeed alert that triggers when current airspeed deviates beyond a specified threshold from the selected airspeed. Full-mission high-fidelity flight simulation studies were conducted using commercial airline crews. Crews were paired by airline for common crew resource management procedures and protocols. Scenarios spanned a range of complex conditions while emulating several causal factors reported in recent accidents involving loss of energy state awareness by pilots. Data collection included questionnaires administered at the completion of flight scenarios, aircraft state data, audio/video recordings of flight crew, eye tracking, pilot control inputs, and researcher observations. Questionnaire response data included subjective measures of workload, situation awareness, complexity, usability, and acceptability. This paper reports relevant findings derived from subjective measures as well as quantitative measures

    Regarding Pilot Usage of Display Technologies for Improving Awareness of Aircraft System States

    Get PDF
    ed systems and the procedures for ng in complexity. This interacting trend places a larger burden on pilots to manage increasing amounts of information and to understand system interactions. The result is an increase in the likelihood of loss of airplane state awareness (ASA). One way to gain more insight into this issue is through experimentation using objective measures of visual behavior. This study summarizes an analysis of oculometer data obtained during a high-fidelity flight simulation study that included a variety of complex pilot-system interactions that occur in current flight decks, as well as several planned for the next generation air transportation system. The study was comprised of various scenarios designed to induce low and high energy aircraft states coupled with other emulated causal factors in recent accidents. Three different display technologies were evaluated in this recent pilot-in-the-loop study conducted at NASA Langley Research Center. These technologies include a stall recovery guidance algorithm and display concept, an enhanced airspeed control indication of when the automation is no longer actively controlling airspeed, and enhanced synoptic diagrams with corresponding simplified electronic interactive checklists. Multiple data analyses were performed to understand how the 26 participating airline pilots were observing ASA-related information provided during different stag specific events within these stages
    corecore